Bovine papillomavirus E7 oncoprotein inhibits anoikis.
نویسندگان
چکیده
The bovine papillomavirus type 1 (BPV-1) E7 oncoprotein is required for the full transformation activity of the virus. Although BPV-1 E7 by itself is not sufficient to induce cellular transformation, it enhances the abilities of the other BPV-1 oncogenes to induce anchorage independence. We have been exploring the mechanisms by which E7 might affect the transformation efficiency of other viral oncoproteins and in particular whether it might protect cells from apoptosis. We report here that BPV-1 E6 and E7 can each independently inhibit anoikis, a type of apoptosis that is induced upon cell detachment. Using site-directed mutagenesis, we determined regions of the E7 protein that were essential for its antiapoptotic activity. The ability of E7 to inhibit anoikis did partially correlate with an ability to enhance anchorage independence of BPV-1 E6-transformed cells. In addition, the antiapoptotic activity of E7 also only partially correlated with its ability to bind p600, a cellular protein that has previously been reported to play a role in anoikis. We conclude that the contribution of E7 to BPV-induced cellular transformation may involve its ability to inhibit anoikis but that additional functional activities must also be involved.
منابع مشابه
Human papillomavirus oncoproteins and apoptosis (Review)
The aim of this study was to review the literature and identify the association between human papillomavirus (HPV) oncoproteins and apoptosis. HPV-associated apoptosis may be primarily blocked by a number of oncoproteins, including E5, E6 and E7. E5 protein protects cells from tumor necrosis factor-associated apoptosis; the oncoprotein E6 predominantly inhibits apoptosis through the p53 pathway...
متن کاملDeveloping Michigan Cancer Foundation 7 Cells with Stable Expression of E7 Gene of Human Papillomavirus Type 16
Background: Human papillomavirus (HPV) is responsible for the development of cervical neoplasia. Infection with human papillomavirus type 16 (HPV-16) is a major risk factor for the development of cervical cancer. The virus encodes three oncoproteins (E5, E6 and E7), of which, the E7 oncoprotein is the major protein involved in cell immortalization and transformation o...
متن کاملMutagenic Potential ofBos taurus Papillomavirus Type 1 E6 Recombinant Protein: First Description
Bovine papillomavirus (BPV) is considered a useful model to study HPV oncogenic process. BPV interacts with the host chromatin, resulting in DNA damage, which is attributed to E5, E6, and E7 viral oncoproteins activity. However, the oncogenic mechanisms of BPV E6 oncoprotein per se remain unknown. This study aimed to evaluate the mutagenic potential of Bos taurus papillomavirus type 1 (BPV-1) E...
متن کاملInhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein.
p21 inhibits cyclin-dependent kinase (CDK) activity and proliferating cell nuclear antigen (PCNA)-dependent DNA replication by binding to CDK/cyclin complexes and to PCNA through distinct domains. The human papillomavirus (HPV)-16 E7 oncoprotein (16E7) abrogated a DNA damage-induced cell cycle arrest in vivo, despite high levels of p21. Using cell lysates and purified proteins we show that 16E7...
متن کاملCellular proteins associated with the E5 oncoprotein of human papillomavirus type 16.
Human papillomavirus type 16 (HPV-16) is strongly implicated in the aetiology of premalignant and malignant disease of the cervix. The mechanisms by which HPV-16 induces cell transformation have been the subject of intense investigation for several years. The viral genome encodes three oncoproteins, E5, E6 and E7, but until recently only E6 and E7 were subjected to such scrutiny. The papillomav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 81 17 شماره
صفحات -
تاریخ انتشار 2007